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Abstract This work applies the methodology of the Universal Evolutionary Global
Optimization, UEGO, to solve the protein structure optimization problem based on
the HP model. The UEGO algorithm was initially designed to solve problems whose
solutions were codified as real vectors. However, in this work the HP protein folding
solutions have been defined as means of conformations encoded by relative coordi-
nates. Consequently several main concepts in UEGO have been re-defined, i.e. the
representation of a solution, the distance concept, the computation of a middle point,
etc. In addition, a new efficient local optimizer has been designed based on the charac-
teristics of the protein model. This work develops the adaptation and implementation
of UEGO to the HP model and analyzes the UEGO solutions of HP protein folding
for different 3D problems. Finally, obtained HP solutions are converted into all-atom
models so that comparison with real proteins can be carried out, and a good agreement
is obtained for small size proteins.
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1 Introduction

Protein structure prediction and optimization is a well-known problem in structural
bioinformatics. One of the most widely studied models of protein folding is the
hydrophobic–hydrophilic (HP) model introduced by Dill et al. [9]. In the HP model,
chains of amino acids are configured as self-avoiding walks on the 3D cubic lattice (i.e.,
adjacent amino acids of each chain lie on adjacent lattice sites, and no site is occupied
by more than one amino acid). Based on the assumption that the hydrophobic interac-
tions make an important contribution to the free energy of the folding process, a protein
is modeled as a specific sequence of hydrophobic (H for nonpolar) or hydrophilic (P
for polar) monomers. An optimal conformation maximizes the number of adjacencies
between H’s. So, this model is translated into an NP complete optimization problem,
as shown in [4].

Due to the relevance of protein structure optimization and the effectiveness of the HP
model, intensive research work in this line has been recently developed. Therefore,
several approaches based on the application of different optimization methods are
described in literature including Monte Carlo methods [30], evolutionary algorithms
[28], ant colony optimization algorithms [11,22] and particle swarm optimization [16],
just to name a few.

However, nowadays it is still an interesting challenge to design effective and efficient
solutions of the HP protein folding problem and not only from the theoretical physics
point of view but also because coarse grained solutions found by the HP model are
in particular conditions close to the global minima of the protein folded structure and
they can be coupled with an all-atom methodology, speeding up its convergence for
finding representative solutions of the folding process.

In this work we explore the use of UEGO, a multimodal evolutionary algorithm
[14,19], for solving the HP protein folding problem.

UEGO is able both to solve multimodal optimization problems where the objective
function has multiple local optima and to discover the structure of these optima as
well as the global optimum. UEGO has shown its effectiveness for solving different
specific optimization problems [20,23,24,26]. Besides, it can be accelerated on several
kinds of High Performance Computing Platforms [2,12,25] and its structure allows
us to include specific local search procedures in order to improve the local search in
particular scenarios. However, it is fair to underline that for solving a particular real
problem by UEGO, such as HP Protein Folding, a twofold effort is necessary: (1)
to re-define new main concepts based on the special codification and context of the
particular problem and (2) to design an effective local optimizer.

This work is focused on the definition of the UEGO solution of HP Protein Folding.
We show that this method achieves results comparable to other methods from literature
at a much lower computational cost. Additionally, bearing in mind that UEGO is a
multimodal global optimizer, it carries out a deep and wide exploration of the search
space in order to provide all the local and global optima. Therefore UEGO presents
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the advantage of exploring larger conformational spaces in the HP model and thus
obtaining more optimal solutions than other reported optimization methods.

The paper is structured as follows; first a description of the HP model is intro-
duced. Next, the main features of the UEGO evolutionary algorithm are explained and
its implementation for solving the HP model is shown in detail. Next, a validation
of UEGO in combination with an all-atom methodology using real protein structures
is shown. Afterwards, results are obtained for different HP model benchmarks and
results against other authors from literature are discussed in terms both of computa-
tional performance and ability to find lower scoring function minima. Finally, results
comparing UEGO predictions against real protein structures are shown.

2 Objective function in HP protein folding problem

The HP protein folding model defined by Dill [9] has been widely used for predicting
protein structures [3,6,18]. The HP model represents every protein sequence as a
string A = a1a2a3 . . . an , where ai ∈ {H, P} and 1 ≤ i ≤ n. A conformation of A is
defined by a sequence of fold directions starting from the lattice site occupied by the
first amino acid residue a1. The protein conformations are restricted to self-avoiding
paths on D-dimensional sequence lattice, where D = 2 or 3. Most protein structure
prediction methodologies assume that the native state of the protein is defined by the
lowest value of the Gibbs free energy what is estimated by a specific scoring function,
which depends strongly on the coarse-grained or all-atom model used for representing
the protein structure [10]. In the HP model, the energy of a conformation is defined by
a scoring function that takes into account the number of topological contacts between
hydrophobic amino acids that are not neighbours in the given sequence.

Thus, the protein structure prediction is translated into an optimization problem as
follows:

Given an amino acid sequence A = a1a2a3 . . . an find an energy minimizing con-
formation Co.

E(Co) = min{E(C)∀C} (1)

where C is a possible conformation of the string A and E(C) is defined by

E(C) =
∑

i, j

e(ai , a j ) (2)

where

e(ai , a j ) =
{−1 if ai , a j = H H and they form a topological contact;

0 in other cases.

Therefore, the objective function for the HP protein folding problem is defined by
Eq. (2) and its values are also referred to as scoring values. The goal of UEGO is the
computation of the conformations which achieve minimum values of the energy or
scoring function according to Eq. (2).
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3 UEGO for solving HP protein folding problem

UEGO [14,19] is a multimodal algorithm which is able both to solve multimodal
optimization problems where the objective function has multiple local optima and to
discover the structure of these optima as well as the global optimum (see Algorithm 1
for a global description of UEGO). This algorithm is a general purpose metaheuris-
tic, which can be tuned to deal with many problems. In particular, it may make use
of the knowledge of a given problem by including a specific local optimizer in its
structure. In fact, UEGO is an iterative process, which guides the local optimizer in
a search for feasible solutions. UEGO works with a population of individuals. The
use of a population ensures the exploration of the search space, while the use of
local search techniques helps to quickly identify “good” areas in the search space.
This provides a balance between the exploitation of the accumulated search expe-
rience and the exploration of the search space to identify regions with high quality
solutions.

3.1 Basic concepts in UEGO

A key notion in UEGO is that of a species s. A species would be equivalent to a
subpopulation in a usual multimodal evolutionary algorithm. A species can be thought
of as a window (sphere) on the whole search space. This window is defined by its center
C and a radius ri that is associated to the level or iteration i in which the species has
been created. The center is a solution, and the radius is a positive number that indicates
the center attraction area which covers a region of the search space and hence, multiple
solutions. It is interesting to remark that this definition assumes a distance defined over
the search space.

The role of this window is to ’localize’ the optimizer that is always called by a
species and can ’see’ only its window, so every new sample is taken from there. The
radius of a species is not arbitrary; it is taken from a list of decreasing radii, the radius
list that follows a cooling schedule, in such a way that given the smallest radius and the
largest one (rl and r1) the remaining radii are expressed by a decreasing exponential
function.

Algorithm 1 describes the UEGO basic structure [14]. Initially, a species or popu-
lation of a single randomly generated individual is created. Once the initial population
is obtained, an iterative process is carried out. At each iteration, a new offspring is
generated using recombination operators and a selection procedure. To increase the
fitness of individuals a local optimizer is then applied.

In UEGO the most important parameters are those defined at each level: the radii
(ri ) and the function evaluation numbers for species creation (newi ) and optimization
(ni ). These parameters are computed from some user-given parameters that are easier
to understand.

The maximum length of the species list is given by the input parameter M and the
number of existing species at level i is denoted by Si .

The maximum number of function evaluations for the whole optimization process
is given by the input parameter N . In addition, each level i has two restrictions on the
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Algorithm 1 The UEGO algorithm
1: Init_species_list
2: Optimize_species(n1)
3: for i = 2 to levels do
4: Determine ri , newi , ni
5: Create_species(newi /Si )
6: Fuse_species(ri )
7: Shorten_species_list(M)
8: Local_Optimize_species(ni /M)
9: Fuse_species(ri )
10: Shorten_species_list(M)
11: end for

number of function evaluations (f.e.), namely newi (maximum f.e. allowed when cre-
ating new species) and ni (maximum f.e. allowed when optimizing individual species).
These parameters are related through: N = ∑levels

i=1 (ni + newi ). For further details
about the mathematical expressions of ni and newi see [14].

3.2 Adaptation of UEGO to HP protein folding problem

3.2.1 Codification of the problem

In the HP protein folding problem, the main interest is focused on the set of particular
folding conformations of a protein sequence which define the search space. In [4,11]
these conformations are defined by a graph which will primarily be the 3-dimensional
cubic lattice Z3. Then, a particular folding is defined as an injective mapping from
[1, . . . , n] to the graph so that adjacent integers map to adjacent nodes on the graph.
This definition of conformation is focused on the spatial location of a protein sequence.
It is very suitable to evaluate the energy of every conformation which is related to
the number of topological contacts between hydrophobic amino acids that are not
neighbors in the sequence. In this context the distance between conformations’ based
on the spatial locations of amino acid can be well defined in relation to the Euclidean
space. However, it is computationally very expensive due to the necessary alignment
process.

An alternative codification of folding conformations is also defined in literature
[17,29,32]. It is based on relative coordinates which define the location of every
amino acid in relation to its contiguous elements in the protein. More specifically,
let A be a protein sequence of length n, then conformations are defined by strings of
length n − 1 over the symbols {r(ight), l(e f t), f (orward), d(own), u(p)}, and that
denotes a valid conformation in the 3D square lattice [17]. Notice that the symbol
b(ack) is not included in the conformation strings because the reference system for
the relative coordinates is defined by the folding address and location of each amino
acid, so ’back’ folding is not allowed in this codification of conformations.

In this work UEGO has been adapted to the HP protein folding problem by means
of conformations encoded by relative coordinates. So, the search space consists of the
set of strings of length n − 1 over the symbols {r, l, f, d, u}.
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3.2.2 Definition of a distance function

It is relevant to underline that the distance between two elements into search space is
the key of the UEGO computation. In this context, it is possible to define a function of
two conformations, x = {xi } and y = {yi } where 1 ≤ i ≤ n and xi , yi ∈ {r, l, f, d, u}
as the number of different elements in both sequences and it can be mathematically
expressed as follows:

d(x, y) =| {i ∈ [1, n]/xi �= yi } | (3)

where | {...} | represents the number of elements of the set defined in the brackets.
This way, d(x, y) is defined as the number of different elements in both sequences, x
and y. It can serve as proof that function d(x, y) is a metric or distance integer in the
search space because it satisfies the four conditions for a metric [1]:

1. d(x, y) ≥ 0;
2. d(x, y) = 0 ⇔ x = y;
3. d(x, y) = d(y, x)

4. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

Proofs of 1–3 are trivial according to definition (3).
Proof of triangle inequality: If di (x, y) is defined as the contribution of elements xi

and yi to d(x, y), the following options are possible ∀i ∈ [1, n] ⊂ Z :

1. if xi = yi = zi then di (x, y) = di (x, z) + di (z, y);
2. if xi = yi �= zi then di (x, y) < di (x, z) + di (z, y);
3. if xi = zi �= yi or yi = zi �= xi then di (x, y) = di (x, z) + di (z, y);
4. if xi �= yi �= zi then di (x, y) < di (x, z) + di (z, y);

According to the accumulative contribution of the i-th elements of conformations
to the distances, it can be concluded that triangle inequality is verified for the met-
ric defined by (3). Therefore, this metric allows us to compare the folding of two
conformations by a light computation on their relative coordinates.

3.2.3 Adaptation of UEGO procedures

UEGO is used for solving the folding problem according to this definition of distance.
UEGO is based on the concept of species defined by a center C and a radius r .
Therefore, according to the distance above defined, a species represents the set of
protein conformations which share at least n − r relative coordinates with its central
conformation C .

The UEGO computation is an iterative procedure composed of the stages defined
in Algorithm 1. Next, every UEGO stage is described according to the the concept of
species and distance related to the set of possible conformations of a specific protein.

Create_species(newi/Si ) This procedure generates a random sampling within
every species, and for every pair of the previously generated random points a third point
is computed in the middle of both points. The random conformations are generated
by the random selection of kx , ky ≤ r elements of C to be randomly updated. The
generation of the middle point is not direct because the search space of conformations
is not defined as a vectorial space. However, from two conformations x and y with

123



800 J Math Chem (2015) 53:794–806

Fig. 1 Illustration of the sampling approach in the Create_species procedure for a 2D protein of n = 10:
(Top) Generation of two random points, x, y and the middle point m in one species with center C and radius
r = 6. (Button) Spatial representation of the conformations related to the points on the top

d(x, y) ≤ kx + ky it is possible to generate a new conformation, m, so that d(x, m) ≈
d(y, m) ≈ (kx +ky)/2. To compute the middle conformation, m, a new conformation
is defined by the combination of both, x and y.

Figure 1 illustrates this general scheme to generate m from x and y. This way the new
conformation m can be considered a middle point of the pair x and y. Nevertheless, the
similarity among d(x, m), d(y, m) and (kx + ky)/2 is approximate, since the integer
distance and the general conformation restrictions can change the general scheme to
define several coordinates of m.

To complete the computation of Create_species the energy or scoring function (Eq.
2) is evaluated at the random pairs of conformations x and y and the middle points m.
Once the points are evaluated:

– if m has a larger scoring value than the members of the pair x and y, then both
members are considered to belong to different species and so, two new species are
created. Their centers are defined by x and y and the associated radius is ri , the
one corresponding to level i .

– if m does not have a larger scoring value than the members of the pair x and y
the center of the calling species is replaced by any computed point that presents a
smaller scoring value.

Fuse_species(ri ) Whenever the centers of any pair of species are closer to each
other than the given radius (ri ), the two species are fused. The center of the new species
will be the one with the better energy value while the level will be the minimum of
the levels of the original species (so the radius will be the larger one).

Shorten_species_list (M) It only consists of deleting the latest species whenever
the total number of species is greater than the maximum allowed.

Local_Optimize_species(ni/M)
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As can be seen in Algorithm 1, UEGO is a hybrid algorithm that introduces a local
optimizer into the evolution process (Local_Optimize_species). In this way, at every
generation, UEGO performs a local optimizer operation on each species, and these
locally optimal solutions replace the caller species. UEGO is abstract in the sense that
the ‘species-management’ and the cooling mechanism have been logically separated
from the actual local optimization algorithm. Therefore, it is possible to implement
any kind of optimizer to work inside a species.

Each solution in the HP protein folding problem has a great amount of restrictions
within the allowed foldings, and therefore is rather difficult using a general local
optimizer to find improved local solutions. As a consequence, the use of specific local
optimizers in which some prior knowledge of the problem and some physical forces
have been taken into account is more efficient.

Three different local optimizers have been considered in this work, i.e. zip based
on the zipping and assembly (ZA) search strategy described in [21], quake and shake
strategies referenced in [15] as “recipes” provided by different users that help to create
accurate protein structure models. The term “recipes” is inspired by the design system
folding algorithms used in the on-line “fold-it” platform where players can design
methods for folding based on the programming language LUA proteins. According
to a study published by [21] a number of algorithms have been highlighted for the
prediction of protein folding. These algorithms have been combined in recipes by
selecting specific levels of performance of the algorithm and the have obtained very
good results.

These local optimizers or recipes address the search of an optimal folding following
different strategies among them. We have carried out a preliminar study considering
different local optimizers in order to find the one that obtains better results. In this
preliminary study, for each local optimizer, a multistart optimization algorithm has
been implemented where this specific local optimizer was applied to several initial
solutions randomly generated. In all the cases, the results provided by these multi-
start algorithms were not good enough, and therefore, after several experiments with
different local optimizers we decided that using a single local optimizer was not the
best option as none of them presented relatively good results. As a consequence we
defined as local optimizer for UEGO a search strategy that consists of a mix of the
three local optimizers metioned above, i.e. zip, quake and shake. The structure of the
local optimizer implemented is described in Algorithm 2. As can be seen variants
turnaround folding have also been added in some of the recipes because it favors the
exploration of the bending sequence in reverse to the trend that was initially created
this sense sequence. An additional element is introduced tracking that can extend at
times the search space.

The input parameter of this procedure is the number of function evaluations devoted
to local optimization ni at current level i divided by the number of existing species
(S) at that level.

To apply local optimization on each species, a multi-heuristic optimizer has been
developed. It is able to apply six different transformations to the folding sequence
where a mix of accurate and random heuristic criteria for changes in the sequence
folding has been applied. These heuristics are combined into “recipes” that have the
same probability of execution. At each iteration of Algorithm 2 a recipe or local
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Algorithm 2 The Local_Optimize_species(ni /Si ) algorithm
1: for j = 1 to Si do
2: for k = 1 to ni /Si do
3: H = random(1,4)
4: Case H
5: 1: S∗

j = LO1(s j )

6: 2: S∗
j = LO2(s j )

7: 3: S∗
j = LO3(s j )

8: 4: S∗
j = LO4(s j )

9: End case
10: F(s∗

j )=Evaluate(s∗ j )

11: if (F(s∗
j ) < F(s j ))

12: s j =s∗
j

13: if (stopping condition = true)
14: Exit
15: end for
16: end for

search algorithm (LOi) is selected and the new conformation is evaluated. If this new
solution has a better scoring value, then it replaces the calling species. The algorithm
finishes when the budged in number of function evaluations is consumed or when other
stopping criteria is fullfiled, not obtaining any improvement after a certain number of
executions.

The three basic methods implemented into the local search are briefly described in
the following:

– ZIP method: this intelligent heuristic analyzes the composition and sequence of
the amino acid chain and tries to group the type of amino acid passed as argument.
This reasoning facilitates the speed of convergence to the optimum especially at
initial levels because it tends to create cores of amino acids of the same type.
Through input parameters the type of amino acid to join in the HP model can be
specified, i.e. “H” or “P”. “H” type is usually the selected as it is intended to group
the hydrophobic amino acids. In addition the number of transformations applied
to the total substring found can also be defined, when it is less than 100%, the
substrings are selected randomly.

– Quake method: this heuristic intentionally modifies the form of a species using an
earthquake fault-shaped movement in the chain of amino acids, and it allows vari-
ations only in certain portions of the sequence. The parameter intensity indicates
the number of amino acids that lines up the fault from the epicenter amino acid.
The parameter quantity represents the number of earthquakes to be applied to the
folding sequence.

– Shake method: this heuristic is the one with the highest level of randomness because
it only randomly modifies the movements of the folding sequence. The two main
parameters are quantity, which indicates the number of perturbations to be applied
and intensity, which represents the number of contiguous positions to be randomly
modified from a random amino acid.

And the four recipes or local search procedures are:
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– LO1: applies zip method to group “H” amino acids in all the string.
– LO2: applies quake method with only 1 quake of intensity 2.
– LO3: applies shake method with intensity 2 at a only one point of the string.
– LO4: applies two consecutive shake operations. The first one with intensity 2 at

three different points of the string, and the second one with intensity 2 at a single
point.

4 Validation of UEGO using real protein structures

In order to compare obtained solutions by UEGO for the protein folding problem
through the HP model with real protein structures, it is necessary to convert coarse-
grained HP solutions to all-atom models. For performing such task, the following
procedure is carried out:

1. Distance between amino acids is rescaled to 3.8 Å, since this is the typical distance
between alpha carbons.

2. Starting from the previous information from coordinates of C-alpha atoms, all-
atom reconstruction is performed using the Pulchra package [27].

3. In order to avoid clashes, an energy minimization of the all-atom model is per-
formed using Molecular Operating Environment, MOE, (Chemical Computing
Group Inc.) using default parameters and the MMF94 forcefield [13].

4. Crystallographic structural information from the protein is downloaded from the
Protein Data Bank (PDB) [5].

5. PyMOL software [8] is used for performing the following tasks:
(a) Alignment between the obtained all-atom model and the real protein structure.
(b) Calculation of the degree of spatial similarity among the alpha carbon back-

bone, the obtained all-atom model and the real protein structure, reported
through the root mean square displacement (RMSD).

(c) Visual representation and inspection of the superposed structures.

The previous methodology has been applied to UEGO solutions in such a way that
HP obtained solutions were converted into all-atom models so that comparison with
real proteins could be carried out. One representative example can be seen in Fig. 2
for a 13 residue protein where a good agreement is obtained for a small size protein
(Tryptophan Zipper 1) and where the RMSD obtained is 3.8 Å.

5 Evaluation of UEGO solutions of the HP protein folding problem

In order to evaluate the performance of the algorithm, a benchmark consisting of
eleven 27-monomer sequences that are referenced in [18] has been considered. Since
UEGO has a heuristic nature each run may provide a different solution. Thus, to study
its robustness, each problem has been solved 100 times and average values and their
confidence intervals have been computed. At each run, we obtain the optimal scoring
value, the optimal conformation, the number of scoring evaluations employed by the
algorithm. With this information we study whether UEGO has successfully found the
best known solution [18].

123



804 J Math Chem (2015) 53:794–806

Fig. 2 Conversion of the HP
results obtained by UEGO to an
all-atom model for Tryptophan
Zipper 1. On the left we can see
the 3D HP model obtained by
UEGO, and on the right the
backbone of the all-atom model
after conversion. The RMSD
obtained is 3.8 Å

Table 1 Optimum values of the scoring function computed by hELP [18], MC [31], GA [31], mGA [7]
and UEGO

HP sequence hELP MC GA mGA UEGO

P H P H P H3 P2 H P H P11 H2 P −9 −7 −9 −8 −9

P H2 P10 H2 P2 H2 P2 H P2 H P H −10 −9 −9 −10 −10

H4 P5 H P4 H3 P9 H −8 −6 −8 NA −8

H3 P2 H4 P3 H P H P2 H2 P2 H P3 H2 −15 −11 −15 −15 −15

H4 P4 H P H2 P3 H2 P10 −8 −7 −8 −8 −8

H P6 H P H3 P2 H2 P3 H P4 H P H −12 −9 −11 NA −12

H P2 H P H2 P3 H P5 H P H2 P H P H P H2 −13 −10 −12 −13 −13

H P11 H P H P8 H P H2 −4 −4 −4 −4 −4

P7 H3 P3 H P H2 P3 H P2 H P3 −7 −6 −7 −7 −7

P5 H2 P H P H P H P H P2 H2 P H2 P H P3 −11 −9 −11 NA −11

H P4 H4 P2 H P H P H3 P H P2 H2 P2 H −16 NA NA NA −16

The values between parenthesis show the average of Kilo-evaluations of objective function

In addition, UEGO has been compared to other methods referred to in literature,
such as hELP (heuristic Energy Landscape Paving) [18], Monte Carlo (MC) [31] and
different Genetic Algorithms (GA and mGA) [31]. In Table 1 the scoring value of
the global optima for each algorithm is shown. The results confirm that UEGO has a
100% rate of success, i.e., it has always found, in all the runs and in all the problems
the best known solution. It can be seen that the best results (reported by the value of
the scoring function in Table 1) are obtained by both hELP and UEGO, obtaining the
same lower minimum values. In contrast, MC and GA methods do not always obtain
these lower minimum values and mGA does not yield solutions in half of the cases.

Regarding computational efficiency of the different methods, results showed that
UEGO outperforms MC and genetic algorithms in terms of number of scoring evalu-
ations, though it requires more evaluations than hELP.

123



J Math Chem (2015) 53:794–806 805

6 Conclusions and future works

In this work we have applied the methodology of the UEGO, to solve the protein
structure optimization problem based on the HP model. In our study, the HP protein
folding solutions have been defined as means of conformations encoded by relative
coordinates, and a new and efficient local optimizer has been designed based on the
characteristics of the protein model.

When comparing with results from literature it can be seen that UEGO outper-
forms Monte Carlo and Genetic Algorithms, and obtains a similar performance to the
hELP method. Furthermore, UEGO can find all the global and local optima due to its
multimodality.

An additional advantage of our methodology is that apart from being compared to
synthetic benchmarks, we have shown that our 3D HP predictions can be converted
into all-atom models and predict with a reasonable accuracy the structure of small size
proteins.

As future work we plan to improve the efficiency of the UEGO algorithm by means
of: (1) improving the local optimizer algorithm by incorporating the keys of the hELP
method; (2) taking advantage of the UEGO intrinsic parallelism on High Performance
Computing platforms.
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